新書推薦:

《
睡虎地秦简普及本
》
售價:NT$
1520

《
资本的全球化:近代上海外商证券市场兴衰史(1843-1941)
》
售價:NT$
500

《
纯粹理性批判 德国哲学家康德代表作 西方哲学史的里程碑著作 著名翻译家蓝公武经典译本
》
售價:NT$
643

《
惨痛的胜利:第一次世界大战中法国的战略和作战行动
》
售價:NT$
857

《
机器时代:技术如何改变我们的工作和生活
》
售價:NT$
296

《
地缘政治与战争:中国历史变局3000年
》
售價:NT$
398

《
追踪进化论 在游戏中读懂科学史 《龙与地下城》玩家打造 沉浸式体验进化论 附赠精美计分器
》
售價:NT$
403

《
消逝的韩光:华丽韩剧背后的血汗与悲鸣
》
售價:NT$
321
|
| 內容簡介: |
|
The ring of symmetric functions A, with natural basis given by the Schur functions, arise in many different areas of mathematics. For example, as the cohomology ring of the grassmanian, and as the representation ring of the symmetric group. One may define a coproduct on A by the plethystic addition on alphabets. In this way the ring of symmetric functions becomes a Hopf algebra. The Littlewood-Richardson numbers may be viewed as the structure constants for the co-product in the Schur basis. The first part of this thesis, inspired by the umbral calculus of Gian-Carlo Rota, is a study of the co-algebra maps of A, The Macdonald polynomials are a somewhat mysterious qt-deformation of the Schur functions. The second part of this thesis contains a proof a generating function identity for the Macdonald polynomials which was originally conjectured by Kawanaka.
|
| 目錄:
|
1.Symmetric functions of Littlewood-Richardson type
1.1.Symmetric Functions
1.1.1.Partitions
1.1.2.Monomial syrmnetric functions
1.1.3.Plethystic notation
1.1.4.Schur functions
1.2.The Umbral Calculus
1.2.1.Coalgebras
1.2.2.Sequences of Binomial Type
1.3.The Hall inner-product
1.3.1.Preliminaries
1.3.2.Column operators
1.3.3.Duality
1.4.Littlewood-Richardson Bases
1.4.1.Generalized complete symmetric functions
1.4.2.Umbraloperators
1.4.3.Column operators
1.4.4.Generalized elementary symmetric functions
1.5.Examples
2.A generating function identity for Macdonald polynomials
2.1.Macdonald Polynomials
2.1.1 .Notation
2.1.2.Operator definition
2.1.3.Characterization using the inner product
2.1.4.Arms and legs
2.1.5.Duality
2.1.6.Kawanaka conjecture
2.2.Resultants
2.2.1.Residue calculations
2.3.Pieri formula and recurrence
2.3.1.Arms and legs again
2.3.2.Pieri formula
2.3.3.Recurrence
2.4.The Proof
2.4.1.The Schur case
2.4.2.Step one
2.4.3.Step two
2.4.4.Step three
References
编辑手记
|
|