新書推薦:

《
图画天地——七世纪前中国山水的图式
》
售價:NT$
796

《
民国教育的记忆与重构
》
售價:NT$
704

《
点亮自然
》
售價:NT$
505

《
异域之爱:中国近现代爱情小说的译与撰(博雅文学论丛)
》
售價:NT$
454

《
儒学即实学:历代道学讲义选说
》
售價:NT$
449

《
国共合作与国民革命(1924—1927)
》
售價:NT$
602

《
盗臣:乾隆四十六年钦办大案纪事
》
售價:NT$
383

《
发明与经济增长
》
售價:NT$
454
|
| 編輯推薦: |
|
本书是国际上Diffeology研究领军人物Patrick Iglesias-Zemmour所撰写的讲义,是已出版的Diffeology领域名著《广义微分几何》的配套教学笔记。
|
| 內容簡介: |
|
《广义微分几何讲义》是为对微分几何感兴趣的学生准备的,尤其是那些在经典理论未涵盖的几何情形。它是已出版的《广义微分几何》(Diffeology)的配套教学笔记,一半源自作者在汕头大学访问时的专题讲座,一半则是作者在同各方学者多年研究探讨后的研究成果、思考、练习等作者希望与读者分享的笔记。全书以时间线为轴,讲述Diffeology领域的起源和发展,编排合理,每章篇头都有总述、定义、理论等讲解,辅以推论过程,由简到难,自然过渡到结论,很符合授课讲义的风格,其后还有习题、问题、思考探讨等用以巩固讲义知识,并启发思考,对研究微分几何或数学物理的学生与研究人员非常有用。
|
| 關於作者: |
|
帕特里克·伊格莱西亚斯-泽穆尔(Patrick Iglesias-Zemmour)是法国国家科学研究中心研究员,也是以色列希伯来大学的长期客座教授。他以辛几何和广义微分几何的研究而闻名。他所著的《广义微分几何》(Diffeology)是该领域国际上的shou部教材。《广义微分几何讲义》是作者多年研究成果的全新呈现,与《广义微分几何》相互呼应。
|
| 目錄:
|
Preface
At the Beginning
Diffeology, the Axiomatic
The Irrational Tori 8
Generating Families, Dimension
Cartan-De-Rham Calculus
Diffeology Fiber Bundles
Homotopy Theory in Diffeology
Local Diffeology, Modeling
Modeling: Manifolds, Orbifolds and Quasifolds
Symplectic Mechanics and Diffeology
Diffeology and Non-Commutative Geometry
Functional Diffeology on Fourier Coefffcients
Smooth Function on Periodic Functions
Symplectic Diffeology on Smooth Periodic Functions
Infinite Torus Action on Smooth Periodic Functions
Basic 1-Forms on Principal Fiber Bundles
Differential of Holonomy for Torus Bundles
Non-symplectic manifold with injective univ. moment map
On Riemannian Metric in Diffeology
A Few Half-Lines
1-Forms on Half-Lines
1-Forms on the Subset Half-Line
Cotangent Space of the Half-Line
1-Forms on Half-Spaces
p-Forms on Half-Spaces
p-Forms on Corners
Differential Forms on the Cross
A note on Hamiltonian Diffeomorphisms
Differential of a Lie-Group Valued Function
The Geodesics of the 2-Torus
The Use of the Moment Map in Geodesic Calculus
The Parasymplectic Space of Geodesics Trajectories
Diffeomorphisms of Geod(T2)
The Diffeomorphisms of the Square
Diffeological Spaces are Locally Connected
Vague Adjunction of a Point to a Space
Embedding a Diffeological Space Into its Powerset
Foliations and Diffeology
Klein Stratiffcation of Diffeological Spaces
Lagrange’s Equations of Motion
Poisson Bracket in Diffeology
Smooth embeddings and smoothly embedded subsets
Seifert Orbifolds
Symplectic spaces without Hamiltonian diffeomorphisms
The Diffeology Framework of General Covariance
Postface: The Beginning of Diffeological Spaces
Appendix: A Categorical Approach to Diffeology
Bibliography
|
|