登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入 新註冊 | 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / EMS,時效:出貨後2-3日

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

2023年08月出版新書

2023年07月出版新書

2023年06月出版新書

2023年05月出版新書

2023年04月出版新書

2023年03月出版新書

2023年02月出版新書

『簡體書』岩体锚固与岩土工程新进展

書城自編碼: 2929868
分類: 簡體書→大陸圖書→建筑建筑科学
作者: 王树仁[Shuren Wang]、[澳]保罗.黑根[Paul
國際書號(ISBN): 9787302454458
出版社: 清华大学出版社
出版日期: 2016-11-01
版次: 1 印次: 1

書度/開本: 16开 釘裝: 精装

售價:NT$ 1260

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
感动,如此创造
《 感动,如此创造 》

售價:NT$ 335.0
商业人像摄影
《 商业人像摄影 》

售價:NT$ 447.0
抗争表演
《 抗争表演 》

售價:NT$ 347.0
咏春八斩刀
《 咏春八斩刀 》

售價:NT$ 391.0
聊不完的艺术家:跨界设计师穆夏
《 聊不完的艺术家:跨界设计师穆夏 》

售價:NT$ 549.0
失去的过去与未来的犯罪
《 失去的过去与未来的犯罪 》

售價:NT$ 279.0
质子交换膜燃料电池系统及其控制   戴海峰,余卓平,袁浩 著
《 质子交换膜燃料电池系统及其控制 戴海峰,余卓平,袁浩 著 》

售價:NT$ 1114.0
绘画的基础 彩色铅笔技法入门教程
《 绘画的基础 彩色铅笔技法入门教程 》

售價:NT$ 279.0

編輯推薦:
岩体锚固与岩土工程新进展总结了近年来关于岩石力学基础理论、分析方法以及创新技术和工程应用的*研究成果。
內容簡介:
本书总结了作者近年来关于岩石力学基础理论、分析方法以及创新技术和工程应用的最新研究成果。全
书分为岩石试验、岩石锚杆、注浆锚索、隧道工程、边坡工程和采矿工程 6章,主要阐述了岩板断裂铰接成
拱过程及其失稳破坏特征,岩石锚杆破坏模式及其力学机制,注浆锚索的尺度效应及其传力特性,以及近年
来在隧道工程、边坡工程和采矿工程实践中的创新技术及其应用效果分析等内容,附有大量的图表和工程实
例。研究内容主要为国家自然科学基金项目、澳大利亚政府奋进研究学者项目、河北省自然科学基金项目,
以及大量国内外现场实践项目提炼出来的相关科学问题和技术难题。本书内容丰富、新颖、实用,可为隧道
工程、边坡工程、采矿工程及岩石力学专业的科研工作者、高等院校师生以及现场工程技术人员提供参考和
借鉴。
目錄
Preface i
Acknowledgments ii
1. Rock Testing
1. Instability Characteristics of a Single
Sandstone
Plate 1
2. Instability Characteristics of
Double-Layer Rock
Plates 11
3. Rupture and Energy Analysis of
Double-Layer Rock
Plates 18
4. Double-Layer Rock Plates With Both Ends
Fixed
Condition 27
5. Viscoelastic Attenuation Properties for
Different
Rocks 32
6. Cutting Fracture Characteristics of
Sandstone 39
7. Energy Dissipation Characteristics of
Sandstone
Cutting 46
8. Fracture Properties on the Compressive
Failure of
Rock 52
References 58
Further Reading 60
2. Rockbolting
1. Mathematical Derivation of Slip Face
Angle 61
2. A Mechanical Model for Cone Bolts 73
3. Effect of Introducing Aggregate Into
Grouting
Material 86
4. Optimizing Selection of Rebar Bolts 90
5. Poissons Ratio Effect in Push and Pull
Testing 102
6. Study on Rockbolting Failure Modes 112
7. Steel Bolt Profile Influence on Bolt
Load Transfer 128
8. Tensile Stress Mobilization Along a
Rockbolt 141
References 146
Further Reading 149
3. Grouted Cable
1. Load Transfer Mechanism of Fully Grouted
Cable 151
2. Theoretical Analysis of Load Transfer
Mechanics 159
3. Impacting Factors on the Design for
Cables 168
4. Mechanical Properties of Cementitious
Grout 177
5. Anchorage Performance Test of Cables 187
6. Axial Performance of a Fully Grouted
Modified
Cable 196
7. Sample Dimensions on Assessing Cable
Loading
Capacity 203
References 212
Further Reading 215
4. Tunnel Engineering
1. Construction Optimization for a Soft
Rock
Tunnel 217
2. Water Inrush Characteristics of Roadway
Excavation 225
3. Lining Reliability Analysis for
Hydraulic Tunnel 233
4. Disturbance Deformation of an Existing
Tunnel 239
5. Energy Dissipation Characteristics of a
Circular
Tunnel 250
6. Pressure-Arch Evolution and Control
Technique 256
7. Skewed Effect of the Pressure-Arch in a
Double-Arch Tunnel 266
References 276
Further Reading 279
5. Slope Engineering
1. Three-Dimensional Deformation Effect and
Optimal
Excavated Design 281
2. Stability Analysis of Three-Dimensional
Slope
Engineering 289
v
Biography iii
3. Fracture Process Analysis of Key Strata
in the
Slope 295
4. Parameters Optimization of the Slope
Engineering 303
5. Key Technologies in Cut-and-Cover
Tunnels in Slope
Engineering 310
6. Potential Risk Analysis of a Tailings
Dam 319
7. A New Landslide Forecast Method 326
References 331
Further Reading 333
6. Mining Geomechanics
1. Analytical Analysis of Roof-Bending
Deflection 335
2. Analytical Solution of the Roof Safe
Thickness 345
3. Catastrophe Characteristics of the
Stratified Rock
Roof 350
4. Pressure-Arch Analysis in Coal Mining
Field 357
5. Analysis of Accumulated Damage Effects
on the
Roof 363
6. Tunnel and Bridge Crossing the Mined-Out
Regions 372
7. Pressure-Arch Analysis in Horizontal
Stratified
Rocks 381
8. Pressure-Arch in a Fully Mechanized
Mining
Field 392
References 400
Further Reading 402
Index 403
內容試閱
There have been significant advances in rockmechanics and understanding of the behaviorof rock with developments in science and engineering.This has occurred at the same time asthere has been greater demand for the utilizationof underground space that has in many casespushed the limits in the engineering design ofunderground excavations while there has beenthe continual need to improve safety and reducethe cost of excavation. It is imperative, then, thatresearch continues which will provide theknowledge necessary to underpin the designand development of new excavation techniques.The book summarizes and enriches the latestresearch results on the theory of rock mechanics,analytical methods, innovative technologies,and its applications in practicalengineering. The book is divided into six chaptersincluding such features as Chapter 1: RockTesting Shuren Wang Sections 1e7; PaulHagan Section 8; Chapter 2: Rock BoltingChen Cao Sections 1e7; Paul Hagan Section8; Chapter 3: Grouted Anchor Paul Hagan;Chapter 4: Tunneling Engineering ShurenWang; Chapter 5: Slope Engineering ShurenWang; and Chapter 6: Mining GeomechanicsShuren Wang. This book is innovative, practical,and rich in content, which can be of greatuse and interest to the researchers undertakingvarious geotechnical engineering and rock mechanics,teachers and students in the relateduniversities, as well as on-site technicians.The material presented in this book contributesto the expansion of knowledge related torock mechanics. The authors, through theirextensive fundamental and applied researchover the past decade, cover a diverse range oftopics from the microbehavior of rock and rockproperties through the interaction of large-scalerock masses and its effect on surface subsidence,mechanics of rock cutting, techniques to improvethe strength and integrity of rock structures insurface and underground excavations, andimprovement in approaches to modeling techniquesused in engineering design.Shuren Wang, PhDProfessor at School of Civil Engineering, HenanPolytechnic University, ChinaPaul C. Hagan, PhDAssociate Professor and Head of School of MiningEngineering, University of New South Wales,AustraliaChen Cao, PhDResearch Fellow at School of Civil, Mining andEnvironmental Engineering, University of Wollongong,Australia


CHAPTERCHAPTER1
RockTesting
1.INSTABILITYCHARACTERISTICSOFASINGLESANDSTONEPLATE1.1IntroductionInChina,numerousshallowmined-outareashavebeenleftduetothedisorderedminingbytheprivatecoalmines.Itisofimportanttheoreticalandpracticalvaluefortheroofstabilityevaluationanddisasterforecastingtoresearchthedeformationrupture,instabilitymechanism,andfailuremodeoftherockroofinthemined-outareas.
ThestudiesontheinstabilityoftherockroofintheminingfieldhavebeenamaintopicbothforscholarsinChinaandabroad.Forexample,accordingtoelasticthinplatetheory,Wangetal.2006analyzedthefractureinstabilitycharacteristicsoftheroofunderdifferentminingdistancesintheminingworkface.Wangetal.2008aanalyzedtherheologicalfailurecharacteristicsoftheroofinthemined-outareasthroughcombiningthethinplateandrheologytheories.Panetal.2013hadconductedtheanalyticalanalysisofthevariationtrendofthebendingmoment,thedeflection,andtheshearforceofthehardroofintheminingfield.Thisresearchisinclinedtoadopttraditionalanalyticmethodstoprobeintotheroofstability.Newtheoriesandmethodshavebeenusedinrecentyears.Zhaoetal.2010utilizedthecatastrophetheory
tosetupverticaldeformationmodeloftheoverlappingroofinthemined-outareas,andputforwardthecriteriaforevaluatingtheroofstability.Wangetal.2013canalyzedthechaosandstochasticresonancephenomenonproducedintheroofduringtheevolutionaryprocessoftherockbeamdeformation.Meanwhile,somenumericalcomputationmethodswereappliedindiscussingthemechanicalresponseofrockplateorbeam.Wangetal.2008aanalyzedtheblast-inducedstresswavepropagationandthespallingdamageinarockplatebyusingthefinite-differencecode.Nomikoetal.2002researchedthemechanicalresponseofthemultijointedroofbeamsusingtwodimensionaldistinctelementcode.Mazoretal.2009examinedthearchingmechanismoftheblockyrockmassdeformationaftertheundergroundtunnelbeingexcavatedusingthediscreteelementmethod.CraveroandIabichino2004discussedtheflexuralfailureofagneissslabfromaquarryfacebyvirtueoflinearelasticfracturemechanicsLEFMandfiniteelementmethodFEM.
Insummary,thoughmanyresearchachievementshavebeenmade,themostresultsstilllacklaboratorytestingandneedtobeverified.Inaddition,somenumericalcalculationswereconductedbasedonthecontinuummechanics,whichcouldnotreflectthespatialheterogeneityandtheanisotropiceffectoftheroofintheminingfield.Onlyafewresearchersutilizedthediscreteelementmethodstostudythemacromechanical
1
1.ROCKTESTINGresponseoftherockplate,anddidnotfurtherexplorethemicroscopicdamageoftherockplate.Therefore,anewloadingdevicewasdevelopedtostudytherock-archinstabilitycharacteristicsoftheplate,andparticleflowcodePFCwasusedtofurtherprobeintothemicroscopicdamageoftherockplateundertheconcentratedandtheuniformloading,respectively.
1.2LoadingExperimentofRockPlate1.2.1SamplesofRockPlateTherocksamplesusedinthetestwereHawkesburysandstone,whichobtainedfromGosfordQuarryinSydney,Australia.Thequartzsandstoneswhichcontainedasmallquantityoffeldspars,siderite,andclaymineralswereformedinmarinesedimentarybasinofthemid-Triassic,andlocatedonthetopofcoal-bearingstrata.Thesurfaceofspecimenexhibitedlocalredratherthanwhitebecauseofthecontentanddistributionofironoxide.
Forthesingle-layerroofofthemined-outareas,itcouldbeclassifiedintotwocategoriesaccordingtothethickness:thethinplateandthethickplate.Andtheroofwasalwaysmadeupofvariouscombinationsofthethinplatesandthethickplates.Thus,accordingtothedefinitionofthethinplateandthethickplateinelasticmechanics,thespecimensizeofthethickplatewasdeignedto190mm75mm24mmlength,width,andthicknessandthatofthethinplatewasdeignedto190mm75mm14mmlength,width,andthickness.ThespecimenswereobtainedbycuttingthesamesandstoneinthelaboratoryofSchoolofMiningEngineering,UniversityofNewSouthWales.ThephysicalemechanicalparametersofrockplateswereshowninTable1.1.
1.2.2LoadingEquipmentTheMTS-851rockmechanicstestingmachinewasselectedasloadingequipment,andtheloadwascontrolledbyverticaldisplacementandloadingratewasset1102mmsPotyondyandCundall,2004.Theverticalforceanddisplacementoccurredintheprocessofthetestandwereautomaticallyrecordedinrealtimebyadataacquisitionsystem.
AsshowninFig.1.1,theconcentratedandtheuniform-loadingtestsetsmainlyconsistedofthreeparts.Thetopwasapoint-loadingfortheconcentratedloadingoranassemblyofthesteelballsfortheuniformloading.Themiddlewasaloadingframeworkwhichincludedfourboltswithnutsconnectingthesteelplatesonbothsides,andthelateralpressurecellwasplacedbetweenthedeformablesteelplateandthethicksteelplatesoastomonitorthehorizontalforce.ThecapacityofthelateralpressurecellLowPressureXTypeLPXwas1000kg.Thebottomwasarectanglesteelfoundation,therotatablehingesupportsweresetonbothsidesoftheloadingframeworktomaintainconnectingwiththesteelplates.
1.2.3AcousticEquipmentandDataAcquisitionSystemTomonitorthecracksinitiatedandidentifythefailurelocationoftherockplate,theUSBAcousticEmissionAENodeswereusedinthetest.TheUSBAENodeisasinglechannelAEdigitalsignalprocessorwithfullAEhitandtimebasedfeatures.InthetesttherewerefourUSBAEnodesbeingconnectedtoaUSBhubformultichanneloperationFig.1.2.AlltheseAEnodesweremadeinMISTRASGroup,Inc.,intheUnitedStates.
TABLE1.1PhysicalandMechanicalParametersofRockPlates
DensityElasticModulusPoissonCohesionFrictionAngleTensileStrengthCompressionNamekgm3GPaRatioMPaDegreesMPaStrengthMPaSandstone26502.70.202.8450.9513.5
1.3 Experiment Results and Analysis1.3.1 Characteristic ofForceeDisplacement CurveAs shown in Fig. 1.3, the vertical forcedisplacementcurves appeared two peaksunder both the concentrate loading and the uniformloading, and the second peak value ishigher than the first one. The thin rock plateshowed the similarity cases in the test withthe thick plate; only the peak values of the verticaland the horizontal force were lower thanthat of the thick one. In general, the curves ofA BFIGURE 1.1 Loading experiment for the rock plate. A Concentrated loading. B Uniform loading.A C D14 23BMTS loadingLateralload cellAE sensor1 2 3 4USB hubPowerAE MTSFIGURE 1.2 Mechanics Testing System MTS connectionwith acoustic emission monitoring system diagram.00.50.00.51.01.52.02.5Stage 13.0Force kN3.54.04.55.05.56.06.52Displacement mm4 6 8 10 12Stage 2Stage 3Stage 4Vertical forceHorizontal force020246 Stage 18Force kN10121416182Displacement mm4 6 8 10Stage 2Stage 3Stage 4Vertical forceHorizontal forceA BFIGURE 1.3 Forceedisplacement curves under different loading conditions. A Concentrated loading. B Uniformloading.1. INSTABILITY CHARACTERISTICS OF A SINGLE SANDSTONE PLATE 31.ROCKTESTINGtheforceedisplacementcouldbeclassifiedasfourmechanicalresponsestagesasfollowsFig.1.1A:
Stage1:Therockplatewasinthesmalldeformationelasticstage.Withtheverticalforceslowlyincreasing,theverticaldisplacementgrewgradually.Onthecontrary,thehorizontalforceshowedaslightdecrease,whichwasmainlycausedbytheslighthorizontalshrinkoftherockplateduringtheloadingprocess.Stage2:Therockplateproducedabrittleruptureandformedtherock-archstructure.Astheverticaldisplacementwenttoabout
2.5mm,theverticalforceappearedtofirstincreaseabruptlyandthendropsharplyinasmallinterval,whichindicatedtherockplateproducingabrittlerupture.Subsequently,therock-archstructurewasformedundertheverticalandthehorizontalreactionforces,andthehorizontalforcestartedtoincrease.Stage3:Therock-archstructurebegantobearloadsandproduceddeformation.Withtheverticalforceincreasing,themiddlehingepointoftherock-archstructuremoveddown,andthetwoflanksoftherock-archrotatedaroundthehingepoint,respectively.Suchkindsofmotionwouldstretchtherock-archstructureinthehorizontaldirectionandsqueezedtheplateintwosides,andthehorizontalforceshowedasignificantgrowth.Stage4:Thehingedrock-archstructurebecameunstable.Withtheverticalforcecontinuouslyincreasing,themiddlehingedpointoftherock-archstructuremoveddownconstantly,andwhenthehingedpointexceededthehorizontallineformedbythehingedpointandtwoendsoftheplate,therock-archstructurebecamethoroughlyunstable.Undertheuniformloading,thedamageandfractureextentoftherockplatewasmoreserious
thanthatundertheconcentratedloading,especiallyatthetwoendsoftherockplateFig.1.1B.AsshowninFig.1.3,theloadedisplacementcurveshowedsimilaritywiththeconcentratedloading,andthepeakvalueoftheverticalforcewasgreaterthanthatundertheconcentratedloading.
1.3.2AcousticCharacteristicoftheRock-PlateFailureAsshowninFig.1.4,inthebeginningofthestagetwo,theAEhitsundertheuniformloadingweregreaterthanthatundertheconcentratedloading,whichwasabout5000and4500,respectively.InStage3andStage4,theAEhitswerealsogreaterandmoreevenlydistributedundertheuniformloadingcomparedwiththeconcentratedloading,whichwasabout5000and3000,respectively.
AsshownintheAElocationmapFigs.1.5and1.6,theresultsshowedobviousdifferencesintheinitialcrackpositionandthecracksdistributionoftherockplateunderdifferentloadingconditions.Whentherock-archstructurewentintoinstability,therealsoshowedthedifferencesinthedamageextentandscopebetweenthetwoloadingmethods.Allinall,theresultsofAEhitsandlocationshowedtheover-damageextentandscopeoftherockplatecausedbytheuniformloadingweremoreseriousthanthatundertheconcentratedloadingcondition.
1.4NumericalSimulationsoftheLoadingTest1.4.1ParametersCalibrationoftheRockPlateTherockplatewastreatedastheporousandsolidmaterialthatconsistedofparticlesandcementbodies.Theforceedisplacementcurvewassimulatedundertheconcentratedloadingusingthethree-dimensionalparticleflowcodePFC3D.
1.INSTABILITYCHARACTERISTICSOFASINGLESANDSTONEPLATEABB, Vetical force
18
5000
5000
16
4000 14
B, Lateral forceC, AE hitsA,Vetical forceACStage 1BStage 4Stage 2Stage 3ABStage 1Stage 4A, Lateral forceC, AE hitsStage 2Stage 32000
6
4000
Force kN
12
3000
2000
AE hitsForce kN
2
AE hits
10
3000
8
1000 4
1000
2
0
0
0
0 200 400 600 800 1000 1200
0 200 400 600 800 1000
Time s
Time Sec
FIGURE1.4Acousticemissionhitsandforceedisplacementcurvesunderdifferentloadingconditions.AConcentrated
loading.BUniformloading.
Beforethenumericalsimulationmodelcouldbebuilt,themicroparametersneededtobeadjustedrepeatedlyandfinalizeduntilthemacromechanicalparameterscalculatedwereconsistentwiththephysicalmacromechanicalparameters.
Themicroparametersrequiredtobeadjustedwereasfollows:risballdensity,Rminisminimumballradius,Rratioisballsizeratio,lisparallel-bondradiusmultiplier,Ecisballeballcontactmodulus,Ecisparallel-bondmodulus,
knksisballstiffnessratio,knksisparallel-bondstiffnessratio,misballfrictioncoefficient,scisparallel-bondnormalstrength,andscisparallel-bondshearstrength.ThemicroparametersrequiredtobeadjustedarelistedinTable1.2.
1.4.2TheComputationalModelTakethethickplate190mm75mm24mmlength,width,andthicknessasanexampletoshowhowtobuildthenumericalcalculationmodel.
First,aparallelepipedspecimenconsistingofarbitraryparticlesconfinedbysixfrictionlesswallswasgeneratedbytheradiusexpansion
method.Second,theradiiofallparticleswerechangeduniformlytoachieveaspecifiedisotropicstresssoastoreducethemagnitudeoflocked-instressesthatwoulddevelopafterthesubsequentbondinstallation.Inthispapertheisotropicstresswassetto0.1MPa.Third,thefloatingparticlesthathadlessthanthreecontactswereeliminated.Fourth,theparallelbondswereinstalledthroughouttheassemblybetweenallparticlesthatwereinnearproximitytofinalizethespecimen.Finally,theloadingdeviceswereinstalledontherockplateasshowninFig.1.7.
Asquarewallwithsides10mmwasmadeonthetopoftherockplateastheconcentratedloading,andtheloadingratewassetto
0.01msTheloadingratecouldberegardedasthequasistaticloading.Thetwocylinderwallswereplacedontherightandleftatthebottomrespectivelyassupportingbase.Thetwowallslocatedonbothsidescouldinstalltheinitialhorizontalforceatthespecifiedvalue.Duringtheloading,thecracksgeneratedintherockplateweremonitoredinrealtime.Theredcracksrepresentedthetensilefracture,andtheblackonesrepresentedtheshearfracture.1.ROCKTESTINGFIGURE1.5Acousticemissionlocationofrockplateunderconcentratedloading.AInitialcracks.BUltimatecracks.
1.4.3AnalysisofNumericalSimulationResultsAsshowninFig.1.8,sincetheinteractionforcesamongtheparticlesweresimplifiedinPFC3D,thereweresomedifferencesintheverticalforceehorizontalforceedisplacementsimulatedcurvescomparedwiththephysicalexperimentalresults,butthevariationtrendof
thecurveswasbasicallythesamefortwocases,sothephysicalexperimentalresultsconfirmedthenumericalcredibility.
IntheelasticdeformationstageFig.1.9A,thedisplacementvectorfielddescribedthataslightelasticdeformationproducedintherockplate,andatthesametimetherewasnocrackgeneratedinthisstage.Inthebrittlerupture
1.INSTABILITYCHARACTERISTICSOFASINGLESANDSTONEPLATE71.INSTABILITYCHARACTERISTICSOFASINGLESANDSTONEPLATE7FIGURE1.6Acousticemissionlocationofrockplateunderuniformloading.AInitialcracks.BUltimatecracks.
TABLE1.2MicroparametersoftheModelinPFC3D
rkgm3RminmmRratiomlEcGPaEcGPaknksknksscMPascMPa
26501.21.660.51.02.72.81.81.816
1.ROCKTESTINGFIGURE1.7Computationalmodelanditsboundaries.
stageFig.1.9B,therewasmanytensilecracksproducedintherockplate,andthesetensilecracksformedatensilefailureplaneintherockplate.Intherock-archbearingloadstageFig.1.9C,theshearingandtensioncracksemergedinthehingedplaneandbothendsoftherockplate.Intherock-archinstabilitystageFig.1.9D,therock-archstructurehadalargedeformation,andpartsoftheparticlesinthehingedplaneofbothsideshadescapedfromtherockplatemainlyduetothesqueezingfracture.
AsshowninFig.1.10,thenumberofshearcracksobeyedtheS-figurecurveduringthewholemechanicalresponseprocess,whichwas
0123 Stage 1Force kN456Stage 2Stage 3Stage 4Vertical forceHorizontal force0 2 4 6 810Displacement mm
FIGURE1.8Forceedisplacementrelationshipcurves.
alsoapplicabletothetensilecracksonlyafterthebrittlerupture.Whentheverticaldisplacementreachedaround1.0mm,thenumberofthetensilecrackssurgedto300.Asthedisplacementvariedintheinterval1.0e2.5mm,thecrackdevelopmentkeptalmostunchanged.However,withthedisplacementcontinuouslyincreasing,thenumberofbothshearingandtensioncrackskeptincreasing,thehingedplanesandbothendsoftherockplateshowedthemixtureofshearingandtensilecracks.Asrock-archstructurewentintoinstability,thenumberofcracksstillkeptsignificantincreasinguntilthedisplacementreachedto6mm.
1.5FactorsSensitiveAnalysisofRock-ArchInstability1.5.1MaterialParameterEffectAsshowninFig.1.11,withthefrictioncoefficientoftheparticlesincreasing,thepeakvaluesoftheverticalforceandthehorizontalforceoftherock-archstructurealsoincreased.Thiswasmainlybecausethefrictiongrowthenhancedthepeakstrengthoftherockmaterial,namelyafterbreakageoftheparallelbond,thestrengthoftherockmaterialoftencontributedtothecontactfrictionoftheparticles.
1.5.2GeometrySizeEffectAsshowninFig.1.12,thelength,width,andthicknessoftherockplatechanged,respectively,torevealthesizeeffectontheinstabilityoftherock-archstructure.Withthelengthoftherockplateincreasing,thepeakvaluesoftheverticalandthehorizontalforceweregraduallydecreased,andthewholevariationintervalwassmall.Withthewidthandthethicknessoftherockplateincreasing,thepeakvaluesoftheverticalandthehorizontalforceshowedobviousgrowth.Inshort,theresponseoftherock-archstructureinstabilitywasmoresensitivetothewidthandthicknesscomparedwiththelength.
1.INSTABILITYCHARACTERISTICSOFASINGLESANDSTONEPLATEA BDCFIGURE1.9Rock-archinstabilityprocessundertheconcentratedloading.AElasticstage.BBrittlerupturestage.
CBearingloadingstage.DRock-archinstabilitystage.0200400600Crack8001000Shear crackTension crack12007
6
Compressive strength MPaVertical force kNHorizontal force kN
Compressive strength MPa
Force kN
5
4
3
14
2
13
0 2 4 6 810
0.0 0.2 0.4 0.6 0.8 1.0Displacement mm Friction coefficientFIGURE1.10Crack-displacementcurves.FIGURE1.11Force-frictioncoefficientcurves.
101.ROCKTESTINGAVertical ForceHorizontal ForceB6.5
9
6.0
8
5.5
7
Force kN
Vertical ForceHorizontal ForceForce kN
5.0
4.5
4.0
3.5
6
5
4
3.0
3
2.5
2180 190 200 210 220 60 70 80 90 100 110
Length mmWidth mm
C123456Force kN789Vertical ForceHorizontal Force10 1520 25 30 35Thickness mm
FIGURE1.12Theforcesvariationwiththerockplategeometryparameters.ALengtheffect.BWidtheffect.
CThicknesseffect.1.5.3LoadingRateandInitialHorizontalForceEffectAsshowninFig.1.13A,whentheloadingrateexceeded10mms,withtheloadingrateincreasing,thepeakvaluesoftheverticalandthehorizontalforceshowedthelineargrowthtrend,andtheamplitudeofthatvariationwassmall.Whentheloadingratewasintheintervalof1.0e10mms,thepeakvalueswerealmost
unchanged,thereforesuchloadingratecouldberegardedasthequasistaticloading.
AsshowninFig.1.13B,whentheinitialhorizontalforcewaslessthan2.0kN,withtheinitialhorizontalforceincreasing,theverticalandthehorizontalforceoftherockplateshowedthenonlinearfluctuatinggrowthtrend.Whentheinitialhorizontalforcewaslargerthan2.0kN,withtheinitialhorizontalforce

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.