登入帳戶  | 訂單查詢  | 購物車/收銀台( 0 ) | 在線留言板  | 付款方式  | 聯絡我們  | 運費計算  | 幫助中心 |  加入書簽
會員登入 新註冊 | 新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2023年度TOP分類閱讀雜誌 香港/國際用戶
最新/最熱/最齊全的簡體書網 品種:超過100萬種書,正品正价,放心網購,悭钱省心 送貨:速遞 / EMS,時效:出貨後2-3日

2024年03月出版新書

2024年02月出版新書

2024年01月出版新書

2023年12月出版新書

2023年11月出版新書

2023年10月出版新書

2023年09月出版新書

2023年08月出版新書

2023年07月出版新書

2023年06月出版新書

2023年05月出版新書

2023年04月出版新書

2023年03月出版新書

2023年02月出版新書

『簡體書』理论物理的数学原理(英文版)

書城自編碼: 2606183
分類: 簡體書→大陸圖書→自然科學數學
作者: 马天,汪守宏 著
國際書號(ISBN): 9787030452894
出版社: 科学出版社
出版日期: 2015-08-01
版次: 1 印次: 1
頁數/字數: 524/500000
書度/開本: 16开 釘裝: 平装

售價:NT$ 1228

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
培训需求分析与年度计划制订——基于组织战略,做”对的”培训!
《 培训需求分析与年度计划制订——基于组织战略,做”对的”培训! 》

售價:NT$ 386.0
这就是心理咨询:全球心理咨询师都在用的45项技术(第3版)
《 这就是心理咨询:全球心理咨询师都在用的45项技术(第3版) 》

售價:NT$ 717.0
正说清朝十二帝(修订珍藏版)
《 正说清朝十二帝(修订珍藏版) 》

售價:NT$ 493.0
黑海史:从历史涟漪到时代巨浪
《 黑海史:从历史涟漪到时代巨浪 》

售價:NT$ 538.0
我,毕加索
《 我,毕加索 》

售價:NT$ 280.0
投资真相
《 投资真相 》

售價:NT$ 381.0
非洲大陆简史(萤火虫书系)
《 非洲大陆简史(萤火虫书系) 》

售價:NT$ 437.0
知宋·宋代之军事
《 知宋·宋代之军事 》

售價:NT$ 442.0

建議一齊購買:

+

NT$ 822
《 微分几何入门与广义相对论(第二版.中册) 》
+

NT$ 1477
《 高精度解多维问题的外推法 》
+

NT$ 490
《 数学的世界 I 》
+

NT$ 647
《 理论物理及其交叉学科前沿 I 》
目錄
noindent\bfChapter
1\quadGeneralIntroduction\dotfill
1.1\quadChallengesofPhysicsandGuidingPrinciple\dotfill
1.2\quadLawofGravity,DarkMatterandDarkEnergy\dotfill
1.3\quadFirstPrinciplesofFourFundamental Interactions\dotfill
1.4\quadSymmetryandSymmetry-Breaking\dotfill
1.5\quadUnifiedFieldTheoryBasedonPIDand PRI\dotfill
1.6\quadTheoryofStrongInteractions\dotfill
1.7\quadTheoryofWeakInteractions\dotfill
1.8\quadNewTheoryofBlackHoles\dotfill
1.9\quadTheUniverse\dotfill
1.10\quadSupernovaeExplosionandAGN Jets\dotfill
1.11\quadMulti-ParticleSystemsand Unification\dotfill
1.12\quadWeaktonModelofElementary Particles\dotfill
\noindent\bfChapter

2\quadFundamentalPrinciplesof Physics\dotfill
2.1\quadEssenceofPhysics\dotfill
2.1.1\quadGeneralguiding principles\dotfill
2.1.2\quadPhenomenological methods\dotfill
2.1.3\quadFundamentalprinciples inphysics\dotfill
2.1.4\quadSymmetry\dotfill
2.1.5\quadInvarianceand tensors\dotfill
2.1.6\quadGeometricinteraction mechanism\dotfill
2.1.7\quadPrincipleof symmetry-breaking\dotfill
2.2\quadLorentzInvariance\dotfill
2.2.1\quadLorentz transformation\dotfill
2.2.2\quadMinkowskispaceand Lorentztensors\dotfill
2.2.3\quadRelativistic invariants\dotfill
2.2.4\quadRelativistic mechanics\dotfill
2.2.5\quadLorentzinvarianceof electromagnetism\dotfill
2.2.6\quadRelativisticquantum mechanics\dotfill
2.2.7\quadDiracspinors\dotfill
2.3\quadEinstein''sTheoryofGeneral Relativity\dotfill
2.3.1\quadPrincipleofgeneral relativity\dotfill
2.3.2\quadPrincipleof equivalence\dotfill
2.3.3\quadGeneraltensorsand covariantderivatives\dotfill
2.3.4\quadEinstein-Hilbert action\dotfill
2.3.5\quadEinsteingravitational fieldequations\dotfill
2.4\quadGaugeInvariance\dotfill
2.4.1\quad$U1$gaugeinvariance ofelectromagnetism\dotfill
2.4.2\quadGenerator representationsof$SUN$\dotfill
2.4.3\quadYang-Millsactionof $SUN$gaugefields\dotfill
2.4.4\quadPrincipleofgauge invariance\dotfill
2.5\quadPrincipleofLagrangianDynamics PLD\dotfill
2.5.1\quadIntroduction\dotfill
2.5.2\quadElasticwaves\dotfill
2.5.3\quadClassical electrodynamics\dotfill
2.5.4\quadLagrangianactionsin quantummechanics\dotfill
2.5.5\quadSymmetriesand conservationlaws\dotfill
2.6\quadPrincipleofHamiltonianDynamics PHD\dotfill
2.6.1\quadHamiltoniansystemsin classicalmechanics\dotfill
2.6.2\quadDynamicsofconservative systems\dotfill
2.6.3\quadPHDforMaxwell electromagneticfields\dotfill
2.6.4\quadQuantumHamiltonian systems\dotfill
\noindent\bfChapter

3\quadMathematicalFoundations\dotfill
3.1\quadBasicConcepts\dotfill
3.1.1\quadRiemannian manifolds\dotfill
3.1.2\quadPhysicalfieldsand vectorbundles\dotfill
3.1.3\quadLineartransformations onvectorbundles\dotfill
3.1.4\quadConnectionsand covariantderivatives\dotfill
3.2\quadAnalysisonRiemannian Manifolds\dotfill
3.2.1\quadSobolevspacesoftensor fields\dotfill
3.2.2\quadSobolevembedding theorem\dotfill
3.2.3\quadDifferential operators\dotfill
3.2.4\quadGaussformula\dotfill
3.2.5\quadPartialdifferential equationsonRiemannianmanifolds\dotfill
3.3\quadOrthogonalDecompositionforTensor Fields\dotfill
3.3.1\quadIntroduction\dotfill
3.3.2\quadOrthogonaldecomposition theorems\dotfill
3.3.3\quadUniquenessoforthogonal decompositions\dotfill
3.3.4\quadOrthogonaldecomposition onmanifoldswithboundary\dotfill
3.4\quadVariationswithdiv$_A$-Free Constraints\dotfill
3.4.1\quadClassicalvariational principle\dotfill
3.4.2\quadDerivativeoperatorsof theYang-Millsfunctionals\dotfill
3.4.3\quadDerivativeoperatorof theEinstein-Hilbertfunctional\dotfill
3.4.4\quadVariationalprinciple withdiv$_A$-freeconstraint\dotfill
3.4.5\quadScalarpotential theorem\dotfill
3.5\quad$SUN$Representation Invariance\dotfill
3.5.1\quad$SUN$gauge representation\dotfill
3.5.2\quadManifoldstructureof $SUN$\dotfill
3.5.3\quad$SUN$tensors\dotfill
3.5.4\quadIntrinsicRiemannian metricon$SUN$\dotfill
3.5.5\quadRepresentation invarianceofgaugetheory\dotfill
3.6\quadSpectralTheoryofDifferential Operators\dotfill
3.6.1\quadPhysical background\dotfill
3.6.2\quadClassicalspectral theory\dotfill
3.6.3\quadNegativeeigenvaluesof ellipticoperators\dotfill
3.6.4\quadEstimatesfornumberof negativeeigenvalues\dotfill
3.6.5\quadSpectrumofWeyl operators\dotfill
\noindent\bfChapter

4\quadUnifiedFieldTheoryofFourFundamental\noindent\bf\qquad\qquad\quad~Interactions\dotfill
4.1\quadPrinciplesofUnifiedField Theory\dotfill
4.1.1\quadFourinteractionsand
theirinteractionmechanism\dotfill
4.1.2\quadGeneralintroductionto
unifiedfieldtheory\dotfill
4.1.3\quadGeometryofunified fields\dotfill
4.1.4\quadGauge symmetry-breaking\dotfill
4.1.5\quadPIDandPRI\dotfill
4.2\quadPhysicalSupportstoPID\dotfill
4.2.1\quadDarkmatteranddark energy\dotfill
4.2.2\quadNonwell-posednessof Einsteinfieldequations\dotfill
4.2.3\quadHig
內容試閱
chapter{General Introduction}
section{Challenges of Physics and Guiding Principle} la{s0.1}
{ bf Challenges of theoretical physics}
medskip
Physics is an important part of science of Nature, and is one of
the oldest science disciplines. It intersects with many other
disciplines of science such as mathematics and chemistry.
Great progresses have been made in physics since the second half
of the 19th century. The Maxwell equation, the Einstein special
and general relativity and quantum mechanics have become
cornerstones of modern physics. Nowadays physics faces new
challenges. A partial list of most important and challenging ones
is given as follows.
begin{quote}
{ sf begin{itemize}
item[1.] What is dark matter?
item[2.] What is dark energy?
end{itemize}
end{quote}
Dark matter and dark energy are two great mysteries in physics.
Their gravitational effects are observed and are not accounted for
in the Einstein gravitational field equations, and in the
Newtonian gravitational laws.
begin{quote}
{ sf begin{itemize}
item[3.] Is there a Big-Bang? What is the origin of our
Universe? Is our Universe static? What is the geometric shape of
our Universe?
end{itemize}
end{quote}
These are certainly most fundamental questions about our
Universe. The current dominant thinking is that the Universe was
originated from the Big-Bang. However, there are many unsolved
mysteries associated with the Big-Bang theory, such as the horizon
problem, the cosmic microwave radiation problem, and the flatness
problem.
begin{quote}
{ sf begin{itemize}
item[4.] What is the main characteristic of a black hole?
end{itemize}
end{quote}
Black holes are fascinating objects in our Universe. However,
there are a lot of confusions about black holes, even its very
definition.
begin{quote}
{ sf begin{itemize}
item[5.] Quark Confinement: Why has there never been observed
free quarks?
end{itemize}
end{quote}
There are 12 fundamental subatomic particles, including six
leptons and six quarks. This is a mystery for not being able to
observe free quarks and gluons.
begin{quote}
{ sf begin{itemize}
item[6.] Baryon asymmetry: Where are there more particles than
anti-particles?
end{itemize}
end{quote}
Each particle has its own antiparticle. It is clear that there are
far more particles in this Universe than anti-particles. What is
the reason? This is another mystery, which is also related to the
formation and origin of our Universe.
begin{quote}
{ sf begin{itemize}
item[7.] Are there weak and strong interactionforce formulas?
end{itemize}
end{quote}
We know that the Newton and the Coulomb formulas are basic force
formulas for gravitational force and for electromagnetic force.
One longstanding problem is to derive similar force formulas for
the weak and the strong interactions, which are responsible for
holding subatomic particles together and for various decays.
begin{quote}
{ sf begin{itemize}
item[8.] What is the strong interaction potential of nucleus?
Can we derive the Yukawa potential from first principles?
end{itemize}
end{quote}
begin{quote}
{ sf begin{itemize}
item[9.] Why do leptons not participate in the strong
interaction?
end{itemize}
end{quote}
begin{quote}
{ sf begin{itemize}
item[10.] What is the mechanism of subatomic decays and
scattering?
end{itemize}
end{quote}
begin{quote}
{ sf begin{itemize}
item[11.] Can the four fundamental interactions be unified, as
Einstein hoped?
end{itemize}
end{quote}
medskip
noindent{ bf Objectives and guiding principles}
medskip
The objectives of this book are
begin{enumerate}
item to derive experimentally verifiable laws of Nature based on
a few fundamental mathematical principles, and item to provide
new insights and solutions to some outstanding challenging
problems of theoretical physics, including those mentioned above.
end{enumerate}
The main focus of this book is on the symbiotic interplay between
theoretical physics and advanced mathematics. Throughout the
entire history of science, the searching for mathematical
representations of the laws of Nature is built upon the believe
that the Nature speaks the language of Mathematics. The Newton''s
universal law of gravitation and laws of mechanics are clearly
among the most important discoveries of the mankind based on the
interplay between mathematics and natural sciences. This viewpoint
is vividly revealed in Newton''s introduction to the third and
final volumes of his great Principia Mathematica: ``{ it I now
demonstrate the frame of the system of the world.}"
It was, however, to the credit of Albert Einstein who envisioned
that the laws of Nature are dictated by a few fundamental
mathematical principles. Inspired by the Albert Einstein''s vision,
our general view of Nature is synthesized in two guiding
principles, Principles~ ref{pr1.1} ref{pr1.2}, which can be
recapitulated as follows:
begin{quote}
{ it Nature speaks the language of Mathematics{ rm :} the laws of Nature 1 are represented by mathematical equations,

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.tw
Copyright (C) 2013 - 2024 (香港)大書城有限公司 All Rights Reserved.